Compare commits
5 Commits
b4f224796d
...
8eee8af4f2
| Author | SHA1 | Date | |
|---|---|---|---|
| 8eee8af4f2 | |||
| 6d8738b231 | |||
| 71ba6001f6 | |||
| ba876f93d4 | |||
| 329222934f |
232
README.md
232
README.md
@ -1,2 +1,232 @@
|
||||
# salam_bot
|
||||
# 🎤 Urdu Speech Intent Recognition using Whisper
|
||||
|
||||
A Python tool that transcribes Urdu speech, translates it to English, and extracts the main intent from the conversation. Built with OpenAI's Whisper model for accurate speech recognition and translation.
|
||||
|
||||
## ✨ Features
|
||||
|
||||
- **🎙️ Urdu Speech Transcription**: Accurate transcription of Urdu audio using Whisper
|
||||
- **🌐 Built-in Translation**: Direct Urdu-to-English translation using Whisper's translation capability
|
||||
- **🎯 Intent Detection**: Identifies user intent from conversation (questions, requests, commands, etc.)
|
||||
- **😊 Sentiment Analysis**: Basic sentiment detection (positive/negative/neutral)
|
||||
- **📊 Confidence Scoring**: Provides confidence scores for both transcription and intent detection
|
||||
- **🔧 Multiple Model Sizes**: Support for tiny, base, small, medium, and large Whisper models
|
||||
- **💾 JSON Export**: Option to save results in structured JSON format
|
||||
- **🎵 Multi-format Support**: Works with MP3, WAV, M4A, FLAC, and other common audio formats
|
||||
|
||||
## 📋 Supported Intents
|
||||
|
||||
The system can detect the following intents:
|
||||
|
||||
| Intent | Description | Example Keywords |
|
||||
|--------|-------------|------------------|
|
||||
| **greeting** | Starting a conversation | "سلام", "ہیلو", "السلام علیکم" |
|
||||
| **question** | Asking questions | "کیا", "کب", "کیوں", "کسے" |
|
||||
| **request** | Making requests | "براہ کرم", "مہربانی", "مدد چاہیے" |
|
||||
| **command** | Giving commands | "کرو", "لاؤ", "دیں", "بناؤ" |
|
||||
| **complaint** | Expressing complaints | "شکایت", "مسئلہ", "پریشانی" |
|
||||
| **information** | Seeking information | "بتائیں", "جانیں", "تفصیل" |
|
||||
| **emergency** | Emergency situations | "حادثہ", "ایمرجنسی", "فوری" |
|
||||
| **appointment** | Scheduling meetings | "ملاقات", "اپائنٹمنٹ", "تاریخ" |
|
||||
| **farewell** | Ending conversations | "اللہ حافظ", "خدا حافظ", "اختتام" |
|
||||
| **thanks** | Expressing gratitude | "شکریہ", "آپ کا بہت شکریہ" |
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
||||
### Installation
|
||||
|
||||
1. **Clone the repository:**
|
||||
```bash
|
||||
git clone https://github.com/yourusername/urdu-intent-recognition.git
|
||||
cd urdu-intent-recognition
|
||||
```
|
||||
|
||||
2. **Install required packages:**
|
||||
```bash
|
||||
pip install openai-whisper torch torchaudio
|
||||
```
|
||||
|
||||
3. **Install FFmpeg (required for audio processing):**
|
||||
- **Ubuntu/Debian:** `sudo apt-get install ffmpeg`
|
||||
- **macOS:** `brew install ffmpeg`
|
||||
- **Windows:** Download from [ffmpeg.org](https://ffmpeg.org/download.html)
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```bash
|
||||
# Process an Urdu audio file
|
||||
python urdu_intent_extractor.py path/to/your/audio.mp3
|
||||
|
||||
# Use a larger model for better accuracy
|
||||
python urdu_intent_extractor.py audio.mp3 --model medium
|
||||
|
||||
# Save results to JSON file
|
||||
python urdu_intent_extractor.py audio.mp3 --output results.json
|
||||
```
|
||||
|
||||
## 📖 Detailed Usage
|
||||
|
||||
### Command Line Arguments
|
||||
|
||||
```bash
|
||||
python urdu_intent_extractor.py AUDIO_FILE [OPTIONS]
|
||||
```
|
||||
|
||||
**Arguments:**
|
||||
- `AUDIO_FILE`: Path to the audio file to process (required)
|
||||
|
||||
**Options:**
|
||||
- `--model`: Whisper model size (default: "base")
|
||||
- Choices: `tiny`, `base`, `small`, `medium`, `large`
|
||||
- Larger models are more accurate but slower
|
||||
- `--output`: Save results to JSON file
|
||||
- `--quiet`: Minimal console output
|
||||
- `--help`: Show help message
|
||||
|
||||
### Python API Usage
|
||||
|
||||
You can also use the tool programmatically:
|
||||
|
||||
```python
|
||||
from urdu_intent_extractor import UrduIntentExtractor
|
||||
|
||||
# Initialize the extractor
|
||||
extractor = UrduIntentExtractor(model_size="base")
|
||||
|
||||
# Process an audio file
|
||||
results = extractor.process_audio_file("path/to/audio.mp3")
|
||||
|
||||
# Access results
|
||||
print(f"Urdu Transcription: {results['transcription']['urdu']}")
|
||||
print(f"English Translation: {results['transcription']['english']}")
|
||||
print(f"Detected Intent: {results['intent']['type']}")
|
||||
print(f"Intent Confidence: {results['intent']['confidence']:.1%}")
|
||||
print(f"Sentiment: {results['sentiment']['type']}")
|
||||
```
|
||||
|
||||
### Example Output
|
||||
|
||||
```
|
||||
==============================================================
|
||||
URDU SPEECH INTENT ANALYSIS RESULTS
|
||||
==============================================================
|
||||
|
||||
📁 File: conversation.mp3
|
||||
|
||||
🗣️ URDU TRANSCRIPTION:
|
||||
السلام علیکم، میں آپ سے ایک سوال پوچھنا چاہتا ہوں
|
||||
|
||||
🌐 ENGLISH TRANSLATION:
|
||||
Hello, I want to ask you a question
|
||||
|
||||
🎯 DETECTED INTENT:
|
||||
❓ Asking a question or seeking clarification
|
||||
Confidence: 85.0%
|
||||
Urdu keywords found: سوال
|
||||
English keywords found: question
|
||||
|
||||
😊 SENTIMENT:
|
||||
NEUTRAL
|
||||
Confidence: 50.0%
|
||||
|
||||
==============================================================
|
||||
```
|
||||
|
||||
## 🏗️ Architecture
|
||||
|
||||
The system works in three main steps:
|
||||
|
||||
1. **Transcription**: Whisper transcribes the Urdu audio to Urdu text
|
||||
2. **Translation**: Whisper translates the Urdu text to English (using `task="translate"`)
|
||||
3. **Intent Analysis**: Analyzes both Urdu and English text for intent keywords
|
||||
|
||||
### Intent Detection Algorithm
|
||||
|
||||
1. **Bilingual Keyword Matching**: Checks for intent keywords in both Urdu and English text
|
||||
2. **Scoring System**: Assigns scores based on keyword matches
|
||||
3. **Confidence Calculation**: Calculates confidence based on match frequency and text length
|
||||
4. **Sentiment Analysis**: Basic sentiment detection using positive/negative keywords
|
||||
|
||||
## 📊 Model Performance
|
||||
|
||||
| Model Size | Speed | Accuracy | GPU Memory | Best Use Case |
|
||||
|------------|-------|----------|------------|---------------|
|
||||
| **base** | ⚡ Fast | 🟡 Moderate | ~1GB | Quick prototyping |
|
||||
| **medium** | 🚀 Good | 🟢 Good | ~1GB | General purpose |
|
||||
| **large-v1** | 🐢 Moderate | 🟢🟢 Better | ~2GB | Better accuracy needed |
|
||||
| **large-v2** | 🐌 Slow | 🟢🟢🟢 Very Good | ~5GB | High accuracy required |
|
||||
| **large-v3** | 🐌🐌 Very Slow | 🟢🟢🟢🟢 Excellent | ~10GB | Research/production |
|
||||
|
||||
## 🔧 Advanced Configuration
|
||||
|
||||
### Custom Intent Keywords
|
||||
|
||||
You can extend or modify the intent keywords by editing the `intent_keywords` dictionary in the code:
|
||||
|
||||
```python
|
||||
self.intent_keywords = {
|
||||
"custom_intent": {
|
||||
"urdu": ["کلیدی لفظ", "دوسرا لفظ"],
|
||||
"english": ["keyword1", "keyword2"]
|
||||
},
|
||||
# ... existing intents
|
||||
}
|
||||
```
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
The tool automatically uses GPU if available. To force CPU usage:
|
||||
|
||||
```python
|
||||
# In the code, remove fp16 parameter:
|
||||
result = self.model.transcribe(
|
||||
audio_path,
|
||||
language="ur",
|
||||
task="translate"
|
||||
# Remove: fp16=torch.cuda.is_available()
|
||||
)
|
||||
```
|
||||
|
||||
## 📝 Example Use Cases
|
||||
|
||||
1. **Customer Service**: Automatically categorize customer calls
|
||||
2. **Voice Assistants**: Understand user commands in Urdu
|
||||
3. **Healthcare**: Triage patient concerns based on urgency
|
||||
4. **Education**: Analyze student questions in online learning
|
||||
5. **Business Analytics**: Understand customer feedback from calls
|
||||
|
||||
## 🐛 Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **"Audio file not found"**
|
||||
- Ensure the file path is correct
|
||||
- Check file permissions
|
||||
|
||||
2. **Poor transcription quality**
|
||||
- Try a larger Whisper model (`--model medium`)
|
||||
- Ensure clear audio quality
|
||||
- Check if audio contains Urdu speech
|
||||
|
||||
3. **Slow processing**
|
||||
- Use smaller model (`--model tiny` or `--model base`)
|
||||
- Ensure GPU is available and properly configured
|
||||
- Reduce audio file size or duration
|
||||
|
||||
4. **FFmpeg errors**
|
||||
- Reinstall FFmpeg
|
||||
- Ensure FFmpeg is in system PATH
|
||||
|
||||
### Debug Mode
|
||||
|
||||
For debugging, you can enable more verbose output by modifying the code:
|
||||
|
||||
```python
|
||||
# Set verbose=True in transcribe calls
|
||||
result = self.model.transcribe(
|
||||
audio_path,
|
||||
language="ur",
|
||||
task="translate",
|
||||
verbose=True, # Add this line
|
||||
fp16=torch.cuda.is_available()
|
||||
)
|
||||
```
|
||||
BIN
Recording.mp3
Normal file
BIN
Recording.mp3
Normal file
Binary file not shown.
318
helpers/audio_analysis.py
Normal file
318
helpers/audio_analysis.py
Normal file
@ -0,0 +1,318 @@
|
||||
import whisper
|
||||
import torch
|
||||
import argparse
|
||||
import os
|
||||
from typing import Dict, Tuple, Optional
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
class UrduIntentExtractor:
|
||||
def __init__(self, model_size: str = "large-v3"):
|
||||
"""
|
||||
Initialize Urdu intent extractor using Whisper
|
||||
|
||||
Args:
|
||||
model_size: Whisper model size (tiny, base, small, medium, large)
|
||||
"""
|
||||
print(f"Loading Whisper {model_size} model...")
|
||||
self.model = whisper.load_model(model_size)
|
||||
|
||||
# Comprehensive intent mapping for Urdu and English
|
||||
self.intent_keywords = {
|
||||
"greeting": {
|
||||
"urdu": ["سلام", "السلام علیکم", "ہیلو", "آداب", "صبح بخیر", "شام بخیر"],
|
||||
"english": ["hello", "hi", "greetings", "good morning", "good evening", "assalam"]
|
||||
},
|
||||
"question": {
|
||||
"urdu": ["کیا", "کب", "کیوں", "کسے", "کہاں", "کس طرح", "کتنا", "کیسے"],
|
||||
"english": ["what", "when", "why", "who", "where", "how", "how much", "which"]
|
||||
},
|
||||
"request": {
|
||||
"urdu": ["براہ کرم", "مہربانی", "چاہتا ہوں", "چاہتی ہوں", "درکار ہے", "مدد چاہیے"],
|
||||
"english": ["please", "kindly", "want", "need", "require", "help", "could you", "would you"]
|
||||
},
|
||||
"command": {
|
||||
"urdu": ["کرو", "کریں", "لاؤ", "دیں", "بناؤ", "روکو", "جاؤ", "آؤ"],
|
||||
"english": ["do", "make", "bring", "give", "create", "stop", "go", "come"]
|
||||
},
|
||||
"complaint": {
|
||||
"urdu": ["شکایت", "مسئلہ", "پریشانی", "غلط", "خراب", "نقص", "برا"],
|
||||
"english": ["complaint", "problem", "issue", "wrong", "bad", "fault", "error"]
|
||||
},
|
||||
"information": {
|
||||
"urdu": ["بتائیں", "جانیں", "معلوم", "تفصیل", "رہنمائی", "بتاؤ"],
|
||||
"english": ["tell", "know", "information", "details", "guide", "explain"]
|
||||
},
|
||||
"emergency": {
|
||||
"urdu": ["حادثہ", "ایمرجنسی", "تباہی", "بچاؤ", "جلدی", "فوری", "خطرہ"],
|
||||
"english": ["accident", "emergency", "help", "urgent", "quick", "danger", "dangerous"]
|
||||
},
|
||||
"appointment": {
|
||||
"urdu": ["ملاقات", "اپائنٹمنٹ", "ٹائم", "تاریخ", "وقت", "دن"],
|
||||
"english": ["meeting", "appointment", "time", "date", "schedule", "day"]
|
||||
},
|
||||
"farewell": {
|
||||
"urdu": ["اللہ حافظ", "خدا حافظ", "بای", "اختتام", "ختم", "اگلی بار"],
|
||||
"english": ["goodbye", "bye", "farewell", "end", "see you", "next time"]
|
||||
},
|
||||
"thanks": {
|
||||
"urdu": ["شکریہ", "مہربانی", "آپ کا بہت شکریہ", "تھینکس"],
|
||||
"english": ["thank", "thanks", "grateful", "appreciate"]
|
||||
}
|
||||
}
|
||||
|
||||
def transcribe_and_translate(self, audio_path: str) -> Dict[str, str]:
|
||||
"""
|
||||
Transcribe Urdu audio and translate to English using Whisper
|
||||
|
||||
Args:
|
||||
audio_path: Path to audio file
|
||||
|
||||
Returns:
|
||||
Dictionary containing Urdu transcription and English translation
|
||||
"""
|
||||
print(f"\nProcessing audio file: {os.path.basename(audio_path)}")
|
||||
|
||||
# First, transcribe in Urdu
|
||||
print("Transcribing in Urdu...")
|
||||
urdu_result = self.model.transcribe(
|
||||
audio_path,
|
||||
language="ur", # Force Urdu language
|
||||
task="transcribe",
|
||||
fp16=torch.cuda.is_available()
|
||||
)
|
||||
urdu_text = urdu_result["text"].strip()
|
||||
|
||||
# Then, translate to English
|
||||
print("Translating to English...")
|
||||
english_result = self.model.transcribe(
|
||||
audio_path,
|
||||
language="ur", # Source language is Urdu
|
||||
task="translate", # This tells Whisper to translate
|
||||
fp16=torch.cuda.is_available()
|
||||
)
|
||||
english_text = english_result["text"].strip()
|
||||
|
||||
return {
|
||||
"urdu": urdu_text,
|
||||
"english": english_text,
|
||||
"urdu_segments": urdu_result.get("segments", []),
|
||||
"english_segments": english_result.get("segments", [])
|
||||
}
|
||||
|
||||
def extract_intent(self, urdu_text: str, english_text: str) -> Tuple[str, float, Dict]:
|
||||
"""
|
||||
Extract main intent from both Urdu and English texts
|
||||
|
||||
Args:
|
||||
urdu_text: Original Urdu transcription
|
||||
english_text: Translated English text
|
||||
|
||||
Returns:
|
||||
Tuple of (intent, confidence, details)
|
||||
"""
|
||||
print("\nAnalyzing intent...")
|
||||
|
||||
# Prepare text for analysis
|
||||
urdu_lower = urdu_text.lower()
|
||||
english_lower = english_text.lower()
|
||||
|
||||
# Calculate intent scores
|
||||
intent_scores = {}
|
||||
intent_details = {}
|
||||
|
||||
for intent, keywords in self.intent_keywords.items():
|
||||
# Count Urdu keyword matches
|
||||
urdu_matches = []
|
||||
for keyword in keywords["urdu"]:
|
||||
if keyword in urdu_lower:
|
||||
urdu_matches.append(keyword)
|
||||
|
||||
# Count English keyword matches
|
||||
english_matches = []
|
||||
for keyword in keywords["english"]:
|
||||
if keyword.lower() in english_lower:
|
||||
english_matches.append(keyword)
|
||||
|
||||
# Calculate scores
|
||||
urdu_score = len(urdu_matches)
|
||||
english_score = len(english_matches)
|
||||
total_score = urdu_score + english_score
|
||||
|
||||
if total_score > 0:
|
||||
intent_scores[intent] = total_score
|
||||
intent_details[intent] = {
|
||||
"urdu_matches": urdu_matches,
|
||||
"english_matches": english_matches,
|
||||
"urdu_score": urdu_score,
|
||||
"english_score": english_score,
|
||||
"total_score": total_score
|
||||
}
|
||||
|
||||
# Determine main intent
|
||||
if intent_scores:
|
||||
# Get intent with highest score
|
||||
main_intent = max(intent_scores, key=intent_scores.get)
|
||||
|
||||
# Calculate confidence based on multiple factors
|
||||
total_words = len(english_lower.split()) + len(urdu_lower.split())
|
||||
base_confidence = intent_scores[main_intent] / max(1, total_words / 5)
|
||||
|
||||
# Boost confidence if matches found in both languages
|
||||
if (intent_details[main_intent]["urdu_score"] > 0 and
|
||||
intent_details[main_intent]["english_score"] > 0):
|
||||
base_confidence *= 1.5
|
||||
|
||||
confidence = min(base_confidence, 1.0)
|
||||
else:
|
||||
main_intent = "general_conversation"
|
||||
confidence = 0.3
|
||||
intent_details[main_intent] = {
|
||||
"urdu_matches": [],
|
||||
"english_matches": [],
|
||||
"urdu_score": 0,
|
||||
"english_score": 0,
|
||||
"total_score": 0
|
||||
}
|
||||
|
||||
return main_intent, confidence, intent_details[main_intent]
|
||||
|
||||
def get_intent_description(self, intent: str) -> str:
|
||||
"""
|
||||
Get human-readable description for intent
|
||||
|
||||
Args:
|
||||
intent: Detected intent
|
||||
|
||||
Returns:
|
||||
Description string
|
||||
"""
|
||||
descriptions = {
|
||||
"greeting": "👋 Greeting or starting a conversation",
|
||||
"question": "❓ Asking a question or seeking clarification",
|
||||
"request": "🙏 Making a request or asking for something",
|
||||
"command": "⚡ Giving a command or instruction",
|
||||
"complaint": "😠 Expressing a complaint or dissatisfaction",
|
||||
"information": "ℹ️ Seeking or providing information",
|
||||
"emergency": "🚨 Emergency situation requiring immediate attention",
|
||||
"appointment": "📅 Scheduling or inquiring about a meeting/appointment",
|
||||
"farewell": "👋 Ending the conversation",
|
||||
"thanks": "🙏 Expressing gratitude or thanks",
|
||||
"general_conversation": "💬 General conversation without specific intent"
|
||||
}
|
||||
return descriptions.get(intent, "💭 Unknown or general conversation")
|
||||
|
||||
def analyze_sentiment(self, english_text: str) -> Tuple[str, float]:
|
||||
"""
|
||||
Basic sentiment analysis based on keywords
|
||||
|
||||
Args:
|
||||
english_text: English translated text
|
||||
|
||||
Returns:
|
||||
Tuple of (sentiment, confidence)
|
||||
"""
|
||||
positive_words = ["good", "great", "excellent", "happy", "thanks", "thank", "please",
|
||||
"wonderful", "nice", "helpful", "appreciate", "love", "like"]
|
||||
negative_words = ["bad", "wrong", "problem", "issue", "complaint", "angry", "upset",
|
||||
"terrible", "horrible", "hate", "not working", "broken", "failed"]
|
||||
|
||||
text_lower = english_text.lower()
|
||||
|
||||
positive_count = sum(1 for word in positive_words if word in text_lower)
|
||||
negative_count = sum(1 for word in negative_words if word in text_lower)
|
||||
|
||||
if positive_count > negative_count:
|
||||
return "positive", positive_count / max(1, (positive_count + negative_count))
|
||||
elif negative_count > positive_count:
|
||||
return "negative", negative_count / max(1, (positive_count + negative_count))
|
||||
else:
|
||||
return "neutral", 0.5
|
||||
|
||||
def process_audio_file(self, audio_path: str, verbose: bool = True) -> Dict:
|
||||
"""
|
||||
Main function to process audio file and extract intent
|
||||
|
||||
Args:
|
||||
audio_path: Path to audio file
|
||||
verbose: Whether to print detailed output
|
||||
|
||||
Returns:
|
||||
Dictionary with all analysis results
|
||||
"""
|
||||
# Validate file
|
||||
if not os.path.exists(audio_path):
|
||||
raise FileNotFoundError(f"Audio file not found: {audio_path}")
|
||||
|
||||
# Transcribe and translate
|
||||
results = self.transcribe_and_translate(audio_path)
|
||||
|
||||
# Extract intent
|
||||
intent, confidence, intent_details = self.extract_intent(
|
||||
results["urdu"],
|
||||
results["english"]
|
||||
)
|
||||
|
||||
# Analyze sentiment
|
||||
sentiment, sentiment_confidence = self.analyze_sentiment(results["english"])
|
||||
|
||||
# Prepare final results
|
||||
final_results = {
|
||||
"file": os.path.basename(audio_path),
|
||||
"transcription": {
|
||||
"urdu": results["urdu"],
|
||||
"english": results["english"]
|
||||
},
|
||||
"intent": {
|
||||
"type": intent,
|
||||
"confidence": confidence,
|
||||
"description": self.get_intent_description(intent),
|
||||
"details": intent_details
|
||||
},
|
||||
"sentiment": {
|
||||
"type": sentiment,
|
||||
"confidence": sentiment_confidence
|
||||
},
|
||||
"segments": {
|
||||
"urdu": results.get("urdu_segments", []),
|
||||
"english": results.get("english_segments", [])
|
||||
}
|
||||
}
|
||||
|
||||
# Print results if verbose
|
||||
if verbose:
|
||||
self.print_results(final_results)
|
||||
|
||||
return final_results
|
||||
|
||||
def print_results(self, results: Dict):
|
||||
"""
|
||||
Print analysis results in a formatted way
|
||||
"""
|
||||
print("\n" + "="*70)
|
||||
print("URDU SPEECH INTENT ANALYSIS RESULTS")
|
||||
print("="*70)
|
||||
|
||||
print(f"\n📁 File: {results['file']}")
|
||||
|
||||
print(f"\n🗣️ URDU TRANSCRIPTION:")
|
||||
print(f" {results['transcription']['urdu']}")
|
||||
|
||||
print(f"\n🌐 ENGLISH TRANSLATION:")
|
||||
print(f" {results['transcription']['english']}")
|
||||
|
||||
print(f"\n🎯 DETECTED INTENT:")
|
||||
print(f" {results['intent']['description']}")
|
||||
print(f" Confidence: {results['intent']['confidence']:.1%}")
|
||||
|
||||
if results['intent']['details']['urdu_matches']:
|
||||
print(f" Urdu keywords found: {', '.join(results['intent']['details']['urdu_matches'])}")
|
||||
if results['intent']['details']['english_matches']:
|
||||
print(f" English keywords found: {', '.join(results['intent']['details']['english_matches'])}")
|
||||
|
||||
print(f"\n😊 SENTIMENT:")
|
||||
print(f" {results['sentiment']['type'].upper()}")
|
||||
print(f" Confidence: {results['sentiment']['confidence']:.1%}")
|
||||
|
||||
print("\n" + "="*70)
|
||||
60
main.py
Normal file
60
main.py
Normal file
@ -0,0 +1,60 @@
|
||||
import argparse
|
||||
from helpers.audio_analysis import UrduIntentExtractor
|
||||
|
||||
def main():
|
||||
"""
|
||||
Command-line interface for Urdu Intent Extractor
|
||||
"""
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Extract intent from Urdu speech using Whisper translation"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"audio_file",
|
||||
help="Path to audio file (mp3, wav, m4a, flac, etc.)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
default="base",
|
||||
choices=["base", "medium", "large-v1", "large-v2", "large-v3"],
|
||||
help="Whisper model size (default: base)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
help="Save results to JSON file"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--quiet",
|
||||
action="store_true",
|
||||
help="Minimal output"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
# Initialize extractor
|
||||
extractor = UrduIntentExtractor(model_size=args.model)
|
||||
|
||||
# Process audio file
|
||||
results = extractor.process_audio_file(
|
||||
args.audio_file,
|
||||
verbose=not args.quiet
|
||||
)
|
||||
|
||||
# Save to JSON if requested
|
||||
if args.output:
|
||||
import json
|
||||
with open(args.output, 'w', encoding='utf-8') as f:
|
||||
json.dump(results, f, ensure_ascii=False, indent=2)
|
||||
print(f"\nResults saved to: {args.output}")
|
||||
|
||||
except FileNotFoundError as e:
|
||||
print(f"❌ Error: {e}")
|
||||
except Exception as e:
|
||||
print(f"❌ An error occurred: {str(e)}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
8
requirements.txt
Normal file
8
requirements.txt
Normal file
@ -0,0 +1,8 @@
|
||||
openai-whisper
|
||||
torch
|
||||
torchaudio
|
||||
transformers
|
||||
argparse
|
||||
huggingface_hub[hf_xet]
|
||||
sentencepiece
|
||||
sacremoses
|
||||
Loading…
x
Reference in New Issue
Block a user