diff --git a/duas_query.py b/duas_query.py index 20cdfce..9c786e4 100644 --- a/duas_query.py +++ b/duas_query.py @@ -1,11 +1,12 @@ from langchain_openai import OpenAIEmbeddings from dotenv import load_dotenv from langchain_postgres import PGVector - +import os load_dotenv() -CONNECTION_STRING = 'postgresql+psycopg2://postgres:test@localhost:5433/vector_db' -COLLECTION_NAME = 'duas_tags_vectors' +CONNECTION_STRING = os.getenv('CONNECTION_STRING') +COLLECTION_NAME = os.getenv('COLLECTION_NAME') + # Initialize embeddings (needed for query encoding only) embeddings = OpenAIEmbeddings(model="text-embedding-3-small") diff --git a/generate_dua_tags_embedding.py b/generate_dua_tags_embedding.py index 40cacdf..103f373 100644 --- a/generate_dua_tags_embedding.py +++ b/generate_dua_tags_embedding.py @@ -5,12 +5,13 @@ from langchain_postgres import PGVector # from langchain.schema import Document from langchain_core.documents import Document from dotenv import load_dotenv - +import os load_dotenv() # Database configuration -CONNECTION_STRING = 'postgresql+psycopg2://postgres:test@localhost:5433/vector_db' -COLLECTION_NAME = 'duas_tags_vectors' + +CONNECTION_STRING = os.getenv('CONNECTION_STRING') +COLLECTION_NAME = os.getenv('COLLECTION_NAME') # Load JSON data with open('duas_directus_published.json', 'r', encoding='utf-8') as f: diff --git a/main.py b/main.py index 1d035b2..b8a4549 100644 --- a/main.py +++ b/main.py @@ -6,6 +6,7 @@ from langchain_openai import OpenAIEmbeddings from langchain_postgres import PGVector from dotenv import load_dotenv import uvicorn +import os load_dotenv() @@ -26,8 +27,9 @@ app.add_middleware( ) # Database configuration -CONNECTION_STRING = 'postgresql+psycopg2://postgres:test@localhost:5433/vector_db' -COLLECTION_NAME = 'duas_tags_vectors' +CONNECTION_STRING = os.getenv('CONNECTION_STRING') +COLLECTION_NAME = os.getenv('COLLECTION_NAME') + # Initialize embeddings and vector store embeddings = OpenAIEmbeddings(model="text-embedding-3-small")