MiniLM-L6-v2 is now the embedding model

This commit is contained in:
Hasnain Ahmed 2025-12-31 01:36:29 +05:00
parent d0776b3177
commit 7799e82319
3 changed files with 6 additions and 6 deletions

View File

@ -1,4 +1,4 @@
from langchain_openai import OpenAIEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from dotenv import load_dotenv
from langchain_postgres import PGVector
import os
@ -9,7 +9,7 @@ COLLECTION_NAME = os.getenv('COLLECTION_NAME')
# Initialize embeddings (needed for query encoding only)
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Load existing vector store
db = PGVector(

View File

@ -1,5 +1,5 @@
import json
from langchain_openai import OpenAIEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
# from langchain.vectorstores.pgvector import PGVector
from langchain_postgres import PGVector
# from langchain.schema import Document
@ -56,7 +56,7 @@ for dua in duas_data:
print(f"Created {len(documents)} documents from tags")
# Initialize embeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Create vector store - embeddings will be created only from tags (page_content)
print("Creating embeddings and storing in pgvector...")

View File

@ -2,7 +2,7 @@ from fastapi import FastAPI, HTTPException, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional
from langchain_openai import OpenAIEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_postgres import PGVector
from dotenv import load_dotenv
import uvicorn
@ -32,7 +32,7 @@ COLLECTION_NAME = os.getenv('COLLECTION_NAME')
# Initialize embeddings and vector store
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
db = PGVector(
collection_name=COLLECTION_NAME,
connection=CONNECTION_STRING,